
Week 9 – Friday

 What did we talk about last time?
 Thread safety
 POSIX threads

 Exam 2 will be similar in format to Exam 1:
 Mostly short answer questions
 Possibly a matching problem or two
 Probably one or two short programming problems
 Possibly a debugging problem

 The focus is networking
 Threading isn't on the exam

 IPC can be extended to processes working on different machines
 The goal is still to do more complex computation than would be possible

or convenient with a single process
 However, communicating between processes on different

machines is much less reliable
 This unreliability is particularly strong on the Internet
 Servers can crash
 Network outages can cause machines to be unreachable
 General chaos means that everything can be working reasonably well and

yet messages are sometimes lost

Home Network

Local ISP
Router

Backbone
Router

Backbone
Router

Backbone
Router

Local ISP
Router

Business Network

 Networking always involves layers
 Each layer talks to the one above and below it and can often be swapped out for different protocols

that provide similar services
 For this class, we'll be talking about a five layer Internet model
 Simpler than the 7 layer OSI model
 Remember that the purpose of models is to understand complex systems

 Different people use different names for the same layers

Application

O
S Transport

Internet

H
ar

dw
ar

e Link

Physical

Application

Transport

Internet

Link

Physical

Internet

Link

Physical

Internet

Link

Physical

 Application layer
 Logical endpoints of communication
 Actual processes that are talking to each other
 Example protocols: HTTP, FTP, SSH

 Transport layer
 Implemented as sockets, the software endpoints of communication
 Provides message passing system calls
 Breaks down messages into fixed-size segments
 Demultiplexes: Takes all messages arriving at the machine and sends them

to appropriate processes by port number
 Example protocols: TCP and UDP

 Internet layer
 Provides point-to-point communication between hosts and routers
 Uses addresses to determine the logical location of hosts
 Determines the route that packets will travel along

 Link layer
 Sends packets between devices on the same network
 Closely tied to hardware
 Example protocols: Ethernet, WiFi, Bluetooth

 Physical layer
 Actual hardware
 Interprets electrons or radio waves as bits

 Every system of computer networking we'll talk about uses packets
 A packet is chunk of data with header information like ports and addresses

 Each layer encapsulates the data from the layer above it for transmission
 The application data is usually bigger than the headers, but we don't draw it to scale

 When being technical, each layer calls its packets different things:
 Transport layer: segments
 Internet layer: packets
 Link layer: frames

 Datagram is also used as a synonym for packet
 Be aware that all these terms get thrown around

Link
Header

Internet
Header

Transport
Header

Application Data

Link Layer Frame Internet Layer Packet Transport Layer Segment

 Local IPC used a name that often mapped to a path in the file
system

 Networked IPC usually needs more information:
 Host to connect to
 Sometimes port
 File or resource being requested

 A standard form for this information is a uniform resource
identifier (URI):

 Note that brackets mark optional entities

URI = scheme:[//authority]path[?query][#fragment]

 The most basic element of the networking arsenal is the
socket

 A socket is half of a tw0-way connection between hosts
 We create a socket with a call to socket()

 Returns an int, essentially a file descriptor
 Is similar to calling open() on a file
 We can call read() and write() on socket file descriptors

int socket (int domain, int type, int protocol);

 Old-style IP addresses are often written in this form:
 74.125.67.100

 4 numbers between 0 and 255, separated by dots
 That's a total of 2564 = 4,294,967,296 addresses
 But there are 8 billion people on earth …

 IPv6 are the new IP addresses that are beginning to be used
by modern hardware
 Often written as 8 groups of 4 hexadecimal digits each
 2001:0db8:85a3:0000:0000:8a2e:0370:7334

 1 hexadecimal digit has 16 possibilities
 How many different addresses is this?
 1632 = 2128 ≈ 3.4×1038 is enough to have 500 trillion addresses for

every cell of every person’s body on Earth

 domain
 What the socket will be used for
 Typical values are IPv4, IPv6, or

local communication
 type
 Determines the transport layer
 Usually TCP or UDP for this class

 protocol
 Usually not used and set to 0
 Can be used for special raw

sockets used for packer sniffers

int socket (int domain, int type, int protocol);

Field Constant Purpose

domain

AF_INET IPv4 addresses

AF_INET6 IPv6 addresses

AF_LOCAL Unix domain socket for IPC

AF_NETLINK Netlink socket for kernel messages

AF_PACKET Raw socket type

type

SOCK_STREAM Byte-stream communication, for TCP transport

SOCK_DGRAM Fixed-size messages, for UDP transport

SOCK_RAW Raw data that is not processed by transport layer

protocol
IPPROTO_RAW IP datagrams without transport-layer processing

ETH_P_ALL Ethernet frames without network-layer processing

 Different data structures are needed to specify addresses
depending on what kind of networking is being done

 Since C doesn't have inheritance, structs with the same size are
treated interchangeably and then cast to each other when
appropriate

 One of these is struct sockaddr, which is 16 bytes in size

// generic address structure
struct sockaddr {
sa_family_t sa_family; // two bytes: AF_INET, etc.
char sa_data[14];

};

 The structure for holding IPv4 addresses is identical in size to struct sockaddr
// IPv4 address structure
struct sockaddr_in {

sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};
struct in_addr {
in_addr_t s_addr; // in_addr_t is an alias for uint32_t

};

Type struct sockaddr

Fields sa_family sa_data

Data 02 00 00 50 5d b8 d8 22 00 00 00 00 00 00 00 00

Fields sin_family sin_port sin_addr sin_zero

Type struct sockaddr_in

 IPv6 addresses are longer and consequently require bigger (and
stranger looking) structs

// IPv6 address structure
struct sockaddr_in6 {
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr; // IPv6 addresses are 128-bit
uint32_t sin6_scope_id;

};

struct in6_addr {
union {

uint8_t __u6_addr8[16]; // aliased as s6_addr
uint16_t __u6_addr16[8]; // aliased as s6_addr16
uint32_t __u6_addr32[4]; // aliased as s6_addr32

} __u6_addr;
};

 Rather than try to keep straight what the endianness of our
machine and the endianness of the network is, we use a family of
functions:
 hton: host to network endianness
 ntoh: network to host endianness
 They come in l (long) versions (for 32-bit integers) or s (short) versions

(for 16-bit integers)

uint32_t htonl (uint32_t hostlong); // 32-bit from host to network
uint16_t htons (uint16_t hostshort); // 16-bit from host to network
uint32_t ntohl (uint32_t netlong); // 32-bit from network to host
uint16_t ntohs (uint16_t netshort); // 16-bit from network to host

 DNS converts a host name to an IP address
 The getaddrinfo() function lets us get a linked list of

matching addresses

 The only annoying bit is that we have to fill out a hints structure
 A utility function freeaddrinfo() is provided to free the

linked list structure when done with it

int getaddrinfo (const char *name, const char *service,
const struct addrinfo *hints, struct addrinfo **results)

void freeaddrinfo (struct addrinfo *info);

 The result of getaddrinfo() is stored into the pointer
given by the last argument

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
char *ai_canonname;
struct sockaddr *ai_addr; // Pointer to address we need
struct addrinfo *ai_next; // Pointer to next addrinfo in linked list

};

 After all the madness is done getting the sockaddr, a client
can connect to a listening server with the connect()
function

 The connect() function is a blocking call that will
eventually succeed or fail to connect the socket file descriptor
to an actual network connection

 If successful, we can read and write from that file descriptor

int connect (int socket, const struct sockaddr *address, socklen_t address_len);

 The server side is more complicated
 It's useful to set some options on the socket using the (confusing)
setsockopt() function

 Reusing the port, allowing reuse of the same port, even after crashing
 Timing out on read messages

 After creating the socket:

int setsockopt (int socket, int level, int option, const void *value, socklen_t lengeth);

//Allow port reuse
int on = 1;
setsockopt (socketfd, SOL_SOCKET, SO_REUSEADDR, (const void *) &on, sizeof (int));
// Set a 5-second timeout when waiting to receive
struct timeval timeout = { 5, 0 };
setsockopt (socketfd, SOL_SOCKET, SO_RCVTIMEO, (const void *) &timeout,

sizeof (timeout));

 After creating the server socket (and maybe setting options),
the next step is to bind the server to a port

 For UDP, the server is then ready to receive messages
 For TCP, it has to listen on the socket

 The backlog gives how many clients can queue up when trying to
connect to the server

int bind (int socket, const struct sockaddr *address, socklen_t address_len);

int listen (int socket, int backlog);

 For TCP connections, after listening, the server can call
accept()

 Blocking function
 Will wait until a client tries to connect
 Then, messages can be sent and received
 Doing so sets up a TCP session, expecting a series of packets from

the connecting client

int accept (int socket, struct sockaddr *address, socklen_t *address_len);

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

read()

write()

close()

Repeat until done

Server ClientTCP
Communication

socket()

bind()

recvfrom()

sendto()

close()

socket()

connect()

recvfrom()

sendto()

close()

Repeat until done

Server ClientUDP
Communication

 The biggest differences between single-machine and networked
IPC:
 Networked IPC typically employs protocols so that machines agree on

how data should be formatted
 Networked IPC is less reliable

 It's hard to talk about TCP communication without examples that
use some particular application layer protocol

 We're going to use HTTP because:
 It's easy to understand
 It's really important
 There are lots of servers in the world we can talk to without any

credentials

 Hypertext Transfer Protocol (HTTP) is
the protocol for (non-encrypted) web
page communication

 It's a request-response protocol
 Shown in the sequence diagram on the right

 HTTP itself is stateless: no information is
preserved between requests

 Other features built around HTTP
(cookies, server-side scripting, and
databases) overcome this stateless
limitation

 HTTP requests and responses start with header lines
 Each ends with CRLF (\r\n), with an extra CRLF after all headers
 Each \r\nwould simply look like a newline, but we show them below for clarity

 The most common client request is GET
 It must have a line like the following:

 path is the file being requested
 version is the HTTP version, usually 1.0, 1.1, or 2

GET /path HTTP/version\r\n

GET /index.html HTTP/1.0\r\n
Accept: text/html\r\n
Accept-Encoding: gzip, deflate, br\r\n
Accept-Language: en-US,en;q=0.5\r\n
User-Agent: Mozilla/5.0\r\n
\r\n

 After sending that data, the response will look something like the following:
HTTP/1.1 200 OK\r\n
Content-Type: text/html; charset=UTF-8\r\n
Date: Sun, 28 Feb 2021 22:20:28 GMT\r\n
Content-Length: 1256\r\n
Connection: close\r\n
\r\n
<!doctype html>\n
<html>\n
<head>\n

<title>Example Domain</title>\n
</head>\n
<body>\n
<div>\n

<h1>Example Domain</h1>\n
<p>This domain is for use in illustrative examples in documents.</p>\n

</div>\n
</body>\n
</html>\n

 HTTP/1.0 was one and done
 HTTP/1.1 allows for persistent connections, so

that multiple requests can be made over the
same TCP connection

 HTML that requires multiple requests is below
 The sequence diagram showing the

communication is on the right

<html>
<head>
<script src="http://zoo.com/library.js" />
<script src="script.js" />
</head>
<body></body>
</html>

 After reading headers we can look through each one
 One critical thing is to find the length of the content, so we can allocate enough space for it

char *line = buffer;
char *eol = strstr (line, "\r\n");
size_t body_length = 0;
while (eol != NULL) // While there are more CRLFs
{

eol[0] = '\0'; // Null-terminate each line
printf ("HEADER LINE: %s\n", line);

// Find content length
if (! strncmp (line, "Content-Length: ", 16))

{
char *len = strchr (line, ' ') + 1;
content_length = strtol (len, NULL, 10);

}

line = eol + 2; // Move to the next line
eol = strstr (line, "\r\n");

}

 On the previous slide, we found the length of the content
 It's possible that the content was so small we read it into our 8 KB buffer
 Otherwise, we'll need to allocate more space

int length = strlen(eoh + 4);
char *content = malloc(length + 1);
strcpy(content, eoh + 4);
if (content_length > length) // if false, all data received
{
// Increase the content size and read additional data
// Bytes needed is the Content-Length minus bytes already received
content = realloc (content, content_length);
bytes = read (socketfd, content + length, content_length - length);

}

 As with TCP, it's hard to give meaningful examples of code
without using some application-level protocol

 For TCP, we did HTTP
 For UDP, we'll do DNS
 DNS, the Domain Name System, is the distributed network

of servers that translates domain names into IP addresses

 ICANN maintains the root structure of DNS
 Below the root are top level domains (TLDs)

like com, edu, org, net and a lot of weird
newish ones like engineering and pink

 Different companies manage each TLD
 Domains can be looked up from the TLD that

houses it
 edu knows where otterbein.edu can be found
 Dots separate each entity

 It’s a kind of little endian ordering where the
leftmost entity is the most specific, growing
more general to the right

 DNS is case insensitive

.

edu

otterbein

mit

com

microsoft

amazon

org

code

 Queries can be iterative:
 Ask the root, get a response for the TLD
 Ask the TLD for the domain you want
 Get a response closer to what you're

looking for and repeat
 Shown on the right

 Queries can also be recursive:
 Ask a name server, it handles everything

 To make the system efficient, servers
cache domains that have been asked
for recently

 There's a time-to-live value that says
how long a cached domain should be
kept

 DNS information is sent in resource records, which have the following
form:
 NAME is the human-readable domain name
 TYPE is gives the kind of record

▪ A is an IP address
▪ CNAME is a canonical name
▪ NS is an authoritative name server

 CLASS is what protocol, often IN for Internet
 TTL is time-to-live in a cache
 RDLENGTH is the length of the data in the record
 RDATA is the data

 NAME and RDATA are variable length, and all other fields are 16 bits

NAME

TYPE

CLASS

TTL

RDLENGTH

RDATA

 Like HTTP, DNS is a
request-response protocol

 Unlike HTTP, DNS uses
UDP and messages aren't
as human readable

 DNS messages contain
five fields: header,
question, answer,
authority, and additional
 Headers start with a

random ID to keep
messages straight

 Example request to resolve
example.com:

Field Data in Hex Meaning

Header

1234 XID=0x1234

0100 OPCODE=SQUERY

0001 0000 0000 0000 1 question field

Question
0765 7861 6d70 6c65 0363 6f6d 00 QNAME=EXAMPLE.COM

0001 0001 QCLASS=IN, QTYPE=A

Answer

Authority

Additional

Character 7 e x a m p l e 3 c o m 0

Hex 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00

Note:
Instead of dots, QNAME gives the

number of characters for each name part

 Here's a
reasonable
response to the
request from the
previous slide

 Don't worry
about the
OPCODE, it's a
set of bits laid
out according to
DNS rules

 QNAME uses a
special code to
indicate that the
name is 12 bytes
into this
response (to
avoid repetition)

Field Data in Hex Meaning

Header

1234 XID=0x1234

8180 OPCODE=SQUERY, RESPONSE, RA

0001 0001 0000 0000 1 question and 1 answer

Question
0765 7861 6d70 6c65 0363 6f6d 00 QNAME=EXAMPLE.COM

0001 0001 QCLASS=IN, QTYPE=A

Answer

c00c QNAME=EXAMPLE.COM [compressed]

0001 QTYPE=A

0001 QCLASS=IN

0000 e949 TTL = 0xe949 = 59721

04 RDLENGTH = 4

0x5db8d822 [93.184.216.34] RDATA

Authority

Additional

 Networked devices are configured to have either a static or
dynamic IP address
 Static IP addresses are set in a configuration file and rarely change
 Dynamic IP addresses are assigned when a device connects to a network

 Most of the devices you own have dynamic IP addresses
 Your laptop or phone is dynamically assigned an IP address by your router

when you connect, either on WiFi or Ethernet
 Even your router is dynamically assigned an IP address by your ISP

 Servers usually have static IP addresses so that DNS records don't
need constant updates

 But if you've just connected your device to the network, how
does it get its IP address?

 Dynamic Host Configuration Protocol (DHCP) is a protocol
for getting a dynamic IP address

 The socket programming we've been talking about requires
an IP address for a client
 That's where messages are sent back to

 So how do you receive a message if you don't have an IP
address…because you're trying to get an IP address?

 Broadcasting!

 Instead of sending a message point
to point, DHCP messages are
broadcast via UDP on port 67
 The destination is the special IP address

255.255.255.255 reserved for
broadcasting

 The source is the special IP address
0.0.0.0 indicating no valid IP

 A DHCP server receives messages
and responds with an IP address

 Other devices ignore the messages

 DHCP is more complex than HTTP or DNS since it's got multiple
steps
1. The new device broadcasts a DHCP discover message asking for an IP
2. The DHCP server broadcasts a DHCP offer message offering an IP
3. The new device broadcasts a DHCP request message asking to take the

IP it was offered
4. The DHCP server broadcasts a DHCP ACK message acknowledging that

the device has been assigned the address in question
 Like DNS, the device uses a random xid to keep different

requests straight
 When the device requests the IP it's been offered, it increments

the xid by 1

 The table shows an
example of the addresses
and messages broadcast
to request and assign an IP
address
 yiaddr is the new IP

address
 siaddr is the server IP

address
 The lease time is how long

the IP address is valid for, in
seconds: 86,400 = 24 hours

 When the lease expires,
the device can ask for the
IP again

Message type UDP addressing DHCP contents

DHCP discover
SRC: 0.0.0.0:68
DEST: 255.255.255.255:67

op: BOOTREQUEST
xid: 42
yiaddr: 0.0.0.0

DHCP offer
SRC: 192.168.1.1:67
DEST: 255.255.255.255:68

op: BOOTREPLY
xid: 42
yiaddr: 192.168.1.7
siaddr: 192.168.1.1
lease time: 86400

DHCP request
SRC: 0.0.0.0:68
DEST: 255.255.255.255:67

op: BOOTREQUEST
xid: 43
yiaddr: 192.168.1.7
siaddr: 192.168.1.1

DHCP ACK
SRC: 192.168.1.1:67
DEST: 255.255.255.255:68

op: BOOTREPLY
xid: 43
yiaddr: 192.168.1.7
siaddr: 192.168.1.1
lease time: 86400

 We have already given examples of client-server applications
 HTTP
 DNS

 Although some client-server interactions are much more
complicated, many of the same principles will apply

 Peer-to-peer applications (P2P) are the other major, application-
layer approach
 Every host is potentially a client and a server
 Communicating with peers is more complex because there isn't a single

server to keep track of
 In many situations, P2P applications can provide better

performance than client-server when the number of hosts is large

 P2P has a historic association with illegal file sharing, but P2P architectures are used for
many different kinds of applications

Application Service Description Examples

Content
Distribution

Scalable approaches to
sharing data across the

Internet

 File storage and sharing: Gnutella, BitTorrent,
InterPlanetary File System (IPFS)

 Content delivery networks (CDNs): Akamai, Limelight
 Streaming media: Spotify (originally), Sonos
 Software update distribution: Linux, World of Warcraft

Distributed
Computing

Delegating work for an
application across many

computers

 Privacy and censorship resistance: Tor, Freenet
 Cryptocurrency: Bitcoin
 Botnets and malware: Storm

Collaboration
Providing real-time

human communication
 Voice Over IP (VOIP): Skype (originally)
 Instant Messaging: Tox

Platforms Building applications Java: JXTA (obsolete)

 Normally, there's a single server for a webpage
 What if that webpage has content that millions of people

from all over the country want to view?
 The load on the server will be huge
 Getting the webpage will be slow, or the server could crash

 Content delivery networks (CDNs) provide caches of
webpages

 People trying to view a webpage will be redirected to a
physically close mirror

 Big companies like Google, Amazon, and Netflix have
their own CDN services

 Less well-known companies like Akamai provide CDN
services to others

Image from Wikipedia

https://en.wikipedia.org/wiki/Content_delivery_network

 P2P hosts are fundamentally
connected by the Internet

 However, they view their
connections inside the P2P
network as an overlay
network, connections to other
P2P hosts

 Thus, socket connections are
made to P2P neighbors who
forward messages on to other
neighbors

Router

Router

Router

Router

Router

A

B

C D

E F

G

Router

Dashed lines show the overlay network

 For A to send a message to B, it
has to send it to C, which sends
it to E which sends it to B
 Even though A and B are on the

same network!
 While this arrangement seems

inefficient, it can be used in
applications like Tor, where the
goal is to hide the true
addresses of the hosts

Router

Router

Router

Router

Router

A

B

C D

E F

G

Router

Dashed lines show the overlay network

 Design decision: Should a P2P network be structured or
unstructured?

 Early P2P networks were often unstructured
 This approach made sense for illegal file sharing
 Unstructured networks have a lot of churn, hosts arriving and leaving

frequently
 Many P2P networks are now structured with a logical framework
 Maybe the overlay network arranges nodes in a circle, with each node

knowing about the node before it and after it
 A CDN might have an organization based on physical proximity

 Design decision: How are objects like files identified in the
network?

 Unstructured networks often use query flooding
 Ask all your neighbors if they have a file
 If they don't have it, they'll ask their neighbors, and so on

 Structured networks have more options
 Indexing objects based on location
 Local indexes only know about neighbors
 Depending on the structure, algorithms can be used to search the network
 Centralized indexes are simple but put strain on a central server
 Other approaches distribute the index across several servers

 The transport layer provides a logical structure for end-to-end
communication between two different (networked) processes

 Although there are other protocols for the transport layer, the
most common ones are flavors of UDP and TCP

 As we have pointed out in the past:
 TCP provides reliable transport that tries to fix failures
 UDP is faster but unreliable

 The User Datagram Protocol (UDP) provides a bare-bones
approach to sending messages

 Information included in a UDP segment is:
 Source port
 Destination port
 Length of the segment
 Checksum
 Payload (actual data)

 Each header field is 16 bits, making a header of 8 bytes for each
UDP segment in addition to the data

 UDP uses a checksum to make sure that the segment isn't
corrupted during transmission

 It is possible (but unlikely) that a message with some bits flipped
will have the same checksum as the original

 Pseudo-code:
 Add up all the 16-bit quantities in the message into a 32-bit sum
 While adding, if the most significant bit of the sum is 1, change the sum to

be the sum of its lower and upper halves
 If there was an odd number of bytes, add the last byte padded with zeroes
 After the sum is made, add the lower and upper halves of it to get a 16-bit

value
 Return the bitwise negation of the result

 The following are UDP segments for a DNS request and response

Header

1388
0035
0025
f693

source port = 5000 (0x1388)
destination port = 53 (0x0035)
length = 37 (0x0025)
checksum

Payload
1234 0100 0001 0000 0000 0000
0765 7861 6d70 6d64 0363 6f6d
0000 0100 01

DNS request for example.com

Header

0035
1388
0035
af04

source port = 53 (0x0035)
destination port = 5000 (0x1388)
length = 53 (0x0035)
checksum

Payload

1234 8180 0001 0001 0000 0000
0765 7861 6d70 6d64 0363 6f6d
0000 0100 01c0 0c00 0100 0100
00e9 4900 045d b8d8 22

DNS response for example.com

 Once the UDP segment arrives, the receiver can compute a
checksum for the segment to see if it matches the one
provided

 UDP itself doesn't do anything with this checksum value, but
the applications built on UDP can decide to request the data
again or ignore the bad data

 This lack of reliability seems like a problem, but it can be
useful for streaming movies or audio

 It's also useful for DNS and DHCP, which are not usually visible
to the user

 Reliable transport is often desirable, so Transmission Control
Protocol (TCP) is usually used for that purpose

 Unlike UDP, TCP creates a session with multiple messages
sent back and forth between the two hosts

 Messages are numbered
 TCP also uses flow control, allowing hosts to avoid sending

more data at once than their receivers can handle

 Because they have to do more, TCP
segments contain more information:
 Source port
 Destination port
 Sequence number (SEQ)
 Acknowledgement number (ACK)
 Flags
 Receive window
 Checksum
 Urgent data pointer
 Optional fields
 Payload (actual data)

 Like UDP, most of these fields are 16
bits
 SEQ and ACK are 32 bits
 Optional fields vary
 Payload is however long it needs to be

 So that segments aren't lost, hosts send a
sequence number (SEQ) with each segment

 The initial value is a random number k
 After sending n bytes, the next SEQ will be n + k
 So that the A knows how much B has gotten,

B's next response to A contains an
acknowledgement number (ACK) which is the
last SEQ from A plus the size of that message

 In this way, both sides know how much the
other side is sending, what's lost, and what's
received

 If nothing is lost and messages are going back
and forth, each SEQ will be the last ACK
received

 Buffers are always finite
 A TCP connection has a buffer that's reading information as it

arrives from the other host
 Data is removed from this buffer as the process reads it from the

socket
 If too much data is arriving, the buffer fills up, and data will be lost
 Each time a process sends a TCP segment, it also sends a receive

window value, giving the number of bytes available in the buffer
for that connection

 If there's not enough space for the next message, the sender will
break its message into parts so that the part it sends will fit into
the receive window

 The following is a TCP segment for an HTTP GET request

Header

1388
0050
0000 0017
0000 002a
5010
1000
cf33
0000

source port = 5000 (0x1388)
destination port = 80 (0x0050)
sequence number = 23 (0x17)
acknowledgement number = 42 (0x2a)
flags
receive window = 4096 (0x1000)
checksum
urgent data ptr

Payload

4745 5420 2f20 4854 5450 2f31
2e31 0d0a 486f 7374 3a20 6578
616d 706c 652e 636f 6d0d 0a43
6f6e 6e65 6374 696f 6e3a 2063
6c6f 7365 0d0a 0d0a

GET / HTTP/1
.1\r\nHost: ex
ample.com\r\nC
onnection: c
lose\r\n\r\n

 When a TCP connection is being established by a
client calling connect(), three segments are sent:
 SYN (from the client)
 SYN-ACK (from the server)
 ACK (from the client)

 These segments are called the three-way handshake
 They are normal segments except that they have no

data
 The SYN bit is set on the SYN and SYN-ACK

segments, and the ACK bit is set on the ACK
segment

 ACK is set on any segment intended to show that an
earlier segment is being acknowledged

 Using SEQ and ACK numbers with the checksum
allows for error detection

 It's hard to be sure what went wrong, but some
conclusions can be drawn:
 Incorrect ACK: If the ACK is too small, the sender of the

ACK missed one or more messages
 Incorrect SEQ: If the SEQ is larger than expected, the

receiver of the SEQ missed one or more messages
 Incorrect checksum: The segment is corrupted or part

is missing
 In all three cases, sending the last segment based

on acknowledged data is a request for the other
side to resend

 To make robust guarantees about message delivery, TCP also
keeps track of the time it takes for segments to make a trip

 If a segment is missing for long enough, TCP can request it
again

 How long should it wait?
 Because the Internet is a large and heterogeneous place, it

wouldn't make sense to wait for any particular fixed time
 Instead, the retransmission timeout (RTO) is computed based

on previous transmission times and how much they fluctuate

 Network security is built on
principles from general
computer security:
 Confidentiality
 Integrity
 Availability

Confidentiality

IntegrityAvailability

 You don't want other people to be able to read your stuff
 Some of your stuff, anyway

 Cryptography, the art of encoding information so that it is
only readable by those knowing a secret (key or password), is
a principle tool used here

 Confidentiality is also called secrecy or privacy

 You don't want people to change your stuff
 You want to know:
 That your important data cannot be easily changed
 That outside data you consider trustworthy cannot be easily changed

either
 There are many different ways that data can be messed up,

and every application has different priorities

 You want to be able to use your stuff
 Many attacks are based on denial of service, simply stopping

a system from functioning correctly
 A SYN flood where attackers try constantly to create TCP

connections from spoofed IP addresses is a classic DoS attack
 Availability can mean any of the following:
 The service is present in usable form
 There is enough capacity for authorized users
 The service is making reasonable progress
 The service completes in an acceptable period of time

 "Secret writing"
 The art of encoding a message so that its meaning is hidden
 Cryptanalysis is breaking those codes
 Cryptography is a powerful tool for confidentiality because

modern encryption methods make it almost impossible to
read an encrypted message

 Cryptographic hash functions provide a tool for integrity
because they can make it obvious when a message has been
changed

 Although cryptography provides tools for confidentiality and
integrity, there's no clear cryptographic tool for availability

 In fact, cryptography often makes availability worse because
encryption puts more strain on a system
 Making it more susceptible to various DoS attacks

 There's always tension between confidentiality, integrity, and
availability

 Increasing confidentiality and integrity usually decreases
availability

 Encryption is the process of taking a message and encoding it
 Decryption is the process of decoding the code back into a

message
 A plaintext is a message before encryption
 A ciphertext is the message in encrypted form
 A key is an extra piece of information used in the encryption

process

 Symmetric encryption is what you probably think of as
encryption

 Two parties have a key which they use for both encrypting
and decrypting messages
 The key is also known as a shared secret

 We have excellent symmetric encryption algorithms, of which
AES is the most used

 But how do we distribute keys between parties who want to
communicate secretly?

 Advanced Encryption Standard
 Symmetric block cipher designed to replace DES
 Block size of 128-bits
 Key sizes of 128, 192, and 256 bits
 Like the older (and deprecated) DES, has a number of rounds (10,

12, or 14 depending on key size)
 Originally called Rijndael, after its Belgian inventors
 Competed with 14 other algorithms over a 5 year period before

being selected by NIST
 No known attacks exist against good implementations of AES
 It should take more than a billion billion years to break an AES encryption
 Even quantum computers shouldn't change that much

 Sometimes, we need something different
 We want a public key that anyone can use to encrypt a

message to Alice
 Alice has a private key that can decrypt such a message
 The public key can only encrypt messages; it cannot be used

to decrypt messages
 Public key cryptography is enormously useful, since

companies can publish their public key far and wide
 Anyone who wants to send them a secret message can do so
 No secret needs to be shared ahead of time

Key K

Encryption Decryption

Symmetric Key Cryptography

Plaintext M Ciphertext C Plaintext M

Encryption Key KE Decryption Key KD

Encryption Decryption

Public Key Cryptography

Plaintext M Ciphertext C Plaintext M

 RSA is the most commonly used public key cryptosystem
 Named for Rivest, Shamir, and Adleman
 Take a plaintext M converted to an integer

 Create an ciphertext C as follows:
C = Me mod n

 Decrypt C back into M as follows:
M = Cd mod n = (Me)d mod n = Med mod n

 Crazy number theory
 For RSA, the modulus n = p·q where p and q are two large

(hundreds of digits) primes
 It's easy to compute d, the decryption exponent, if you know p

and q
 No one knows an efficient way to factor a large composite

number
 However, quantum computers could make RSA much less safe

 Your computer needs to be able read the password file to
check passwords

 But, even an administrator shouldn't be able to read
everyone's passwords

 Hash functions to the rescue!

 A cryptographic (or one-way) hash function (also called a
cryptographic checksum) takes a variable sized message M
and produces a fixed-size hash code H(M)

 Not the same as hash functions from data structures
 The hash code produced is also called a digest
 It can be used to provide authentication of both the integrity

and the sender of a message
 It allows us to store some information about a message that

an attacker cannot use to recover the message

 When two messages hash to the same value, this is called a
collision

 Because of the pigeonhole principle, collisions are
unavoidable

 The key feature we want from our hash functions is that
collisions are difficult to predict

• Given a digest, should be hard to find a message
that would produce it

• One-way property

Preimage
Resistance

• Given a message m, it should be hard to find a
different message that has the same digest

Second Preimage
Resistance

• Should be hard to find any two messages that
hash to the same digest (collision)

Collision
Resistance

• A small change in input should correspond to a large change in
outputAvalanching

• Hash function should work on a block of data of any sizeApplicability

• Output should be a fixed length Uniformity

• It should be fast to compute a digest in software and hardware
• No longer than retrieval from secondary storage

Speed

 Instead of storing the actual passwords, Windows and Unix
machines store the hash of the passwords

 When someone logs on, the operating system hashes the
password and compares it to the stored version

 No one gets to see your original password!
 Hash functions are also used for digital signatures

 Secure Hash Algorithm
 Created by NIST
 SHA-0 was published in 1993, but it was replaced in 1995 by SHA-1
 The difference between the two is only a single bitwise rotation, but the NSA

said it was important
 SHA-1 security
 Digest size: 160 bits
 Considered unsafe
 Theoretical attacks can run in 263 SHA-1 evaluations

 SHA-2 is a successor family of hash functions
 224, 256, 384, 512 bit digests
 Now the preferred hashing function
 Designed by the NSA

 SHA-3 (Keccak) uses a completely different form of hashing
than SHA-0, SHA-1, and SHA-2

 Although the attacks on SHA-1 are expensive and there are no
real attacks on SHA-2, the attacks on SHA-0 made people
nervous about hash functions following the same design

 SHA-3 also allows for variable size digests, for added security
 224, 256, 384, and 512 are standard

 Either SHA-2 or SHA-3 is considered secure (for now)

 Transport-Layer Security (TLS) adds end-to-end security to
TCP
 Secure versions of protocols often add an "s" to their names: HTTPS,

SFTP, and IMAPS
 These protocols use TLS

 With TLS, the TCP data is encrypted
 However, the TCP headers are not encrypted
 If they were, the OS wouldn't know which port to deliver them to
 Because network traffic needs to know where to go, it's usually

possible to do traffic analysis, even when the data is encrypted

 With TLS, the connection first performs a
TCP three-way handshake

 Then, the client and the server perform a
TLS handshake that uses public key
cryptography to agree on a session key

 The session key is used to communicate
securely using symmetric key encryption
(probably AES) during the TCP session

 Because the data in the TCP segments is encrypted with AES,
the information's confidentiality is maintained

 To protect integrity, a message authentication code (MAC) of
the TCP headers is attached as an optional TCP field
 The MAC is a cryptographic hash digest, probably using SHA-2

 These are the broad strokes, but there are many details
 Details change with each version of TLS
 We're up to TLS 1.3 now

 TCP and UDP provide a framework for end-to-end
communication between processes

 But they ignore the fact that different hosts are
communicating

 The Internet layer provides a system for getting messages
from host to host
 The data plane gives the structure of the network, using Internet

Protocol (IP) addresses
 The control plane controls how messages are routed through the

network

 IPv4 addresses only allow for about 4 billion addresses
 One approach for dealing with this limitation is subnets
 Private subnets have IP addresses that can't be reached from outside
 Subnets sometimes use the notation of an IP address followed by /n

where /n is some number of bits like /16 or /24, meaning that
addresses inside the subnet must match the first 16 or 24 bits
 Example: 192.168.0.0/16means everything on the subnet must

start with 192.168
 The matching bits can also be specified as a subnet mask:
255.255.0.0 is the one matching the first 16 bits

 Three ranges of IP addresses are reserved in IPv4 for private
subnets:
 192.168.0.0/16 (216 = 65,536 possible devices)
 172.16.0.0/12 (220 = 1,048,576 possible devices)
 10.0.0.0/8 (224 = 16,777,216 possible devices)

 The first range is probably familiar to you because it's used for
most home networks

 IPv6 has its own range, fd00::/8, that allows for up to 264

devices

 So that different subnets can communicate, a router connects the
private subnet to the Internet
 The router has a private IP address, used to communicate with the subnet,

and a public IP address, used to communicate with the rest of the world
 Routers do network address translation (NAT), a kind of IP

masquerading
 The outside world only sees the router's IP
 When the router gets a message, it sends it to the appropriate device in

the private subnet
 The router observes traffic and changes port numbers on incoming and

outgoing packets so that multiple devices behind the router can
communicate with a single server

Bob's HomeAlice's Home

ISP

Internet

192.168.1.3 192.168.1.5

192.168.1.1

192.168.1.7 192.168.1.2

192.168.1.0

75.3.28.14 75.3.28.27

 version distinguishes between IPv4 and IPv6
 protocol is TCP or UDP
 checksum is just for the header and does no checking for the payload
 TTL gives the number of times the packet can be forwarded (keeps packets from hopping

around forever)
 Like UDP, IP makes no guarantees about reliability
 The purple options fields are variable length

0-3 4-7 8-11 12-15 16-19 20-23 24-27 28-31

version length type of service total length

identification flags fragment offset

TTL protocol checksum

source address

destination address

options

payload (transport-layer segment)

 Here's an example of the values (in hex) that might be stored in an
IPv4 packet

 Note that IPv6 packets are similar but simpler, because they don't
have optional fields

Header

4500
0060
0000 0000
08
06
6862
867e 8ddd
5dd8 d822

IPv4, length = 20 bytes (5 words)
total length = 96 bytes
ID, flags, offset (not used here)
TTL
protocol (TCP)
checksum
source address 134.126.141.221
destination address 93.184.216.34

Payload …

 The Internet is a network of networks
 Each independent network controlled by a single entity is called an

autonomous system (AS)
 Each AS connects to other ASes at gateway routers
 BGP is a protocol that describes how these routers communicate to each

other the paths through them to other networks
 Within an AS, OSPF, RIP, and other protocols determine the

fastest route through the network
 OSPF uses Dijkstra's shortest path algorithm based on time delays,

broadcasting information to other routers
 Alternatively, when a router using RIP discovers a new shortest path, it

forwards the information only to its neighbors

 The Internet layer focuses on routing packets through networks
 The link layer focuses on forwarding packets from point to point
 This forwarding all happens within a single kind of technology
 Things can go wrong at this fundamental level of networking:
 Processing delay because checksums and other information have to be

computed
 Queuing delay because other packets are waiting to be sent
 Transmission delay because converting to the physical layer takes work
 Propagation delay because the physical layer can't send data instantly

 All these delays can add up

 Ethernet is one of the best known examples of link level
protocols

 Ethernet is a collection of standards for communicating over
copper or fiber optics

 Like higher level protocols, Ethernet also wraps its data with a
header (and a footer too)
 Typically, link layer packets are called frames

 For historical reasons, Ethernet frames are described in octets
(always 8 bits) rather than bytes (which used to be variable in
size)

 An Ethernet frame uses:
 8 octets for a preamble that's always the same, to mark the start of a message
 6 octets for destination address
 6 octets for source address
 2 octets for type of Ethernet
 A payload of variable size
 4 octets for a cyclic redundancy check (CRC), an error checking value computed from the whole

frame that is stronger than a checksum
 Source and destination addresses are media access control (MAC) addresses that are

usually the same for a device's entire life
 Address Resolution Protocol (ARP) is used to ask devices on the network for their MAC

based on their IP

Size 8 octets 6 octets 6 octets 2 octets varies 4 octets

Purpose Preamble Destination Source Type Payload CRC

Example aaaaaaaaaaaaaaab f0def12cc22b f45c89bd332d 0800 ... 64713722

 Here's an example of all the layers together:

Ethernet header aaaa aaaa aaaa aaab f0de f12c c22b f45c 89bd 332d 0800

IPv4 header 4500 0060 0000 0000 0806 6862 867e 8ddd 5dd8 d822

Et
he

rn
et

Pa

yl
oa

dTCP header 1388 0050 0000 0017 0000 002a 5010 1000 cf33 0000

IP
v4

Pa

yl
oa

d

HTTP header
4745 5420 2f20 4854 5450 2f31 2e31 0d0a 486f 7374
3a20 6578 616d 706c 652e 636f 6d0d 0a43 6f6e 6e65
6374 696f 6e3a 2063 6c6f 7365 0d0a 0d0a

TC
P

Pa
yl

oa
d

Ethernet FCS 6471 3722

 Wireless communication differs from wired at the link and
physical layers and sometimes above

 There are a few important wireless network technologies:
 Wi-Fi is a set of standards designed to replace normal wired networking

connections
 Bluetooth is designed for short-range mobile ad hoc networks (MANETS)
▪ Uses a star topology where many peripherals connect to a central devices

 Zigbee uses a wireless mesh network for communicating between many
low powered devices
▪ Popular for Internet of Things (IoT) applications

 Exam 2!
 During class time

 Finish Assignment 5
 Due tonight by midnight!

 Exam 2 in class on Monday!
 Review Chapters 4-5

	COMP 3400
	Last time
	Questions?
	Assignment 5
	Review
	Exam 2 format
	Networking
	Networking
	Visualization
	Layer models
	Layers
	Layers continued
	Packets
	Naming and addressing
	Sockets
	Sockets
	IPv4
	IPv6
	Details for socket()
	Networking data structures
	IPv4 socket addresses
	IPv6 socket addresses
	Endian conversion
	Getting addresses from a host name
	The addrinfo struct
	Client side: connecting
	Server side: options
	Server side: binding and listening
	Server side: accepting
	Slide Number 30
	Slide Number 31
	TCP Socket Programming
	TCP communication
	HTTP
	Sample request
	Sample response
	Persistent connections
	Processing headers
	Getting the content
	UDP Socket Programming
	UDP socket programming
	DNS
	DNS queries
	DNS resource record structure
	DNS requests
	DNS responses
	Broadcasting
	Static and dynamic IP addresses
	DHCP
	Broadcasting
	DHCP steps
	DHCP example
	Application Layer
	Peer-to-peer applications
	P2P examples
	Content delivery networks
	Overlay networks
	Overlay networks
	Characteristics of P2P networks
	More characteristics of P2P networks
	Transport Layer
	Transport layer
	UDP
	Checksum
	Example UDP segments
	Unreliability
	TCP
	TCP segments
	Numbering
	Flow control
	Example TCP segment
	TCP handshake
	Packet loss
	Timeouts
	Network Security
	CIA
	Confidentiality
	Integrity
	Availability
	Cryptography
	Cryptography and availability
	Encryption and decryption
	Symmetric key cryptography
	AES
	Public key cryptography
	Symmetric vs. public key
	RSA Algorithm
	Why it's safe
	Catch-22
	Definition
	Collisions
	Crucial properties
	Additional properties
	Password dilemma resolved
	SHA family
	SHA-3
	Transport-Layer Security
	TLS handshake
	Confidentiality and integrity
	Internet Layer
	Internet layer
	IP addresses and subnets
	Special subnets
	NAT
	Visualization of subnets
	IPv4 packet format
	IP packet example
	Network routing protocols
	Link Layer
	Link layer
	Ethernet
	Ethernet frames
	Stacks on stacks on stacks
	Wireless
	Upcoming
	Next time…
	Reminders

